Fgfr2b mediated epithelial–mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning

نویسندگان

  • Päivi Kettunen
  • Bradley Spencer-Dene
  • Tomasz Furmanek
  • Inger Hals Kvinnsland
  • Clive Dickson
  • Irma Thesleff
  • Keijo Luukko
چکیده

Dental trigeminal nerve fiber growth and patterning are strictly integrated with tooth morphogenesis, but it is still unknown, how these two developmental processes are coordinated. Here we show that targeted inactivation of the dental epithelium expressed Fgfr2b results in cessation of the mouse mandibular first molar development at the degenerated cap stage and the failure of the trigeminal molar nerve to establish the lingual branch at E13.5 stage while the buccal branch develops properly. This axon patterning defect correlates to the histological absence of the mesenchymal dental follicle and adjacent Semaphorin3A-free dental follicle target field as well as appearance of ectopic Sema3A expression domain in the lingual side of the epithelial bud. Although the mesenchymal ligands for Fgfr2b, Fgf3 and -10 were present in the Fgfr2b(-/)(-) dental mesenchyme, mutant dental epithelium showed dramatically reduced proliferation and the lack of Fgf3. Tgfbeta1, which controls Sema3A was absent from the Fgfr2b(-/-) tooth germ, and Sema3A was specifically downregulated in the dental mesenchyme at the bud and cap stage. In addition, the epithelial primary enamel knot signaling center although being molecularly present neither was histologically detectable nor expressed Bmp4 and Fgf3 as well as Fgf4, which is essential for tooth morphogenesis and stimulates mesenchymal Fgf3 and Tgfbeta1. Fgf4 beads rescued Tgfbeta1 in the Fgfr2b(-/-) dental mesenchyme explants and Tgfbeta1 induced de novo Sema3A expression in the dental mesenchyme. Collectively these results demonstrate that epithelial Fgfr2b controls tooth morphogenesis and dental axon patterning, and suggests that Fgfr2b, by mediating local epithelial-mesenchymal interactions, integrates these two distinct developmental processes during odontogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfβ1 regulate semaphorin 3a expression in the dental mesenchyme

During development of the peripheral nervous system, growing axons navigate and establish connections to their developing target organs. Regulation of axon growth involves coordinated activity of diffusible and local contact-mediated attractive and repulsive guiding cues including members of for example the netrin, Slit, ephrin and semaphorin families (Dickson, 2002; Tessier-Lavigne and Goodman...

متن کامل

Normal and abnormal dental development.

Teeth are vertebrate organs that arise from complex and progressive interactions between an ectoderm, the oral epithelium and an underlying mesenchyme. During their early development, tooth germs exhibit many morphological and molecular similarities with other developing epithelial appendages, such as hair follicles, mammary and salivary glands, lungs, kidneys, etc. The developing mouse tooth g...

متن کامل

Stem Cells of the Dental Pulp

 Dental Pulp Stem Cells (DPSCs) can be found within the cell rich zone of dental pulp. These stem cells, under specific stimuli, differentiate into many cell types which have wide therapeutic applications.   The dental stem cells are derived from both deciduous and permanent teeth. The viable dental stem cells are very simple to collect, without any mortality and morbidity. Dental pulp stem c...

متن کامل

Reiterative signaling and patterning during mammalian tooth morphogenesis

Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts ...

متن کامل

Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages.

Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell-cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2007